Partitioned and Implicit-Explicit General Linear Methods for Ordinary Differential Equations

نویسندگان

  • Hong Zhang
  • Adrian Sandu
  • Sébastien Blaise
چکیده

Implicit-explicit (IMEX) time stepping methods can efficiently solve differential equations with both stiff and nonstiff components. IMEX Runge-Kutta methods and IMEX linear multistep methods have been studied in the literature. In this paper we study new implicit-explicit methods of general linear type (IMEX-GLMs). We develop an order conditions theory for high stage order partitioned GLMs that share the same abscissae, and show that no additional coupling order conditions are needed. Consequently, GLMs offer an excellent framework for the construction of multi-method integration algorithms. Next, we propose a family of IMEX schemes based on diagonallyimplicit multi-stage integration methods and construct practical schemes of order three. Numerical results confirm the theoretical findings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explicit stabilized integration of stiff determinisitic or stochastic problems

Explicit stabilized methods for stiff ordinary differential equations have a long history. Proposed in the early 1960s and developed during 40 years for the integration of stiff ordinary differential equations, these methods have recently been extended to implicit-explicit or partitioned type methods for advection-diffusion-reaction problems, and to efficient explicit solvers for stiff mean-squ...

متن کامل

Symplectic and symmetric methods for the numerical solution of some mathematical models of celestial objects

In the last years, the theory of numerical methods for system of non-stiff and stiff ordinary differential equations has reached a certain maturity. So, there are many excellent codes which are based on Runge–Kutta methods, linear multistep methods, Obreshkov methods, hybrid methods or general linear methods. Although these methods have good accuracy and desirable stability properties such as A...

متن کامل

IMEX extensions of linear multistep methods with general monotonicity and boundedness properties

For solving hyperbolic systems with stiff sources or relaxation terms, time stepping methods should combine favorable monotonicity properties for shocks and steep solution gradients with good stability properties for stiff terms. In this paper we consider implicit–explicit (IMEX) multistep methods. Suitable methods will be constructed, based on explicit methods with general monotonicity and bou...

متن کامل

High Order Implicit-Explicit General Linear Methods with Optimized Stability Regions

In the numerical solution of partial differential equations using a method-of-lines approach, the availability of high order spatial discretization schemes motivates the development of sophisticated high order time integration methods. For multiphysics problems with both stiff and non-stiff terms implicit-explicit (IMEX) time stepping methods attempt to combine the lower cost advantage of expli...

متن کامل

Second-Order Accurate Projective Integrators for Multiscale Problems

We introduce new projective versions of second-order accurate Runge-Kutta and Adams-Bashforth methods, and demonstrate their use as outer integrators in solving stiff differential systems. An important outcome is that the new outer integrators, when combined with an inner telescopic projective integrator, can result in fully explicit methods with adaptive outer step size selection and solution ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2014